THE MAYER-VIETORIS LONG EXACT SEQUENCE

THEOREM

Let X be a space and A,BCX
such that AUB = X, Let Uo= {AB},
and i^A, i^B, j^A, j^B the following
inclusions:

then, the sequence (*)

0 - ((AnB)ic + (iB) ((A) + (A) + (A)

homology

The (A B) $\xrightarrow{i \to 0} H_p(A) \oplus H_p(B) \xrightarrow{i \to 0} H_p(X) \to H$

If ANB $\neq \phi$ then the same sepuence with reduced homologies is also exact.

Proof

Let us first check that \$\theta\$ is exact.

if $\Phi(-ic^B)$ is injective \(\)

Ja + jB is surjective

Now let C_A ⊕C_B ∈ Ken (j^Acti^B), where C_A ∈ S_P(A) & C_B ∈ S_P(B),

=) $\int_{C}^{A} (C_{A}) + j_{c}^{B} (C_{B}) = C_{A} + C_{B} = 0$

=> CB = -CA. this implies that

CA, CB & Sp (AnB) . >> DC & Sp (AnB) S.t.

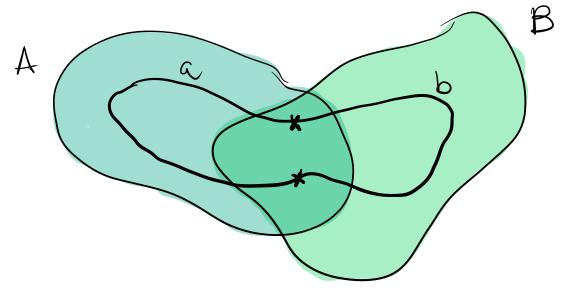
(ic
$$\theta(ic^3)(c) = C_A \oplus C_B$$

Finally, note that $H_p(C_n(x)) \cong H_p(x)$
by the map induced by the inclusion
 $C_n(x) \to C_n(x)$. Now the statement
follows from the SES \Rightarrow LES.
For relative homology one
studies the LES of
 $0 \to S(AnB) \to S(A) \oplus S_0(B) \Rightarrow S(A+B) \to 0$
 $1 \in \mathbb{R}$
 $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0$

We can show how of Hn(x) -> Hn-1(ANB)
behaves geometrically. For any or \in Hn(x)

select a cycle c s.t.

We can select such a c that c=a+b, where at Sp(A), beSp(B)

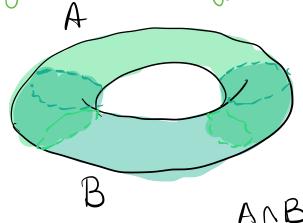


this we can do since we can use borycentric subdivision to break down c into simplices of as small diameter as desired that 8th represent the same homology class)

Since C is a cycle $0 = \partial C = \partial a + \partial b \quad \text{and therefore, } - \partial b = \partial a$ $\partial_{+} m = [\partial a] = [-\partial b] \in H_{p,1}(A \cap B).$

EXAMPLE

Compute homology groups of the torus using the Mayer-Vietoris septlence.



A

ANB homotopy
epuivalent
to
SIUS

AB homotopy equivalent to S1